Dissemin is shutting down on January 1st, 2025

Published in

Wiley, International Transactions on Electrical Energy Systems, (2023), p. 1-19, 2023

DOI: 10.1155/2023/6315918

Links

Tools

Export citation

Search in Google Scholar

Optimal Sizing and Deployment of Renewable Energy Generators in Practical Transmission Network Using Grid-Oriented Multiobjective Harmony Search Algorithm for Loss Reduction and Voltage Profile Improvements

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents grid-oriented multiobjective harmony search algorithm (GOMOHSA) to incorporate the multiple grid parameters for minimization of the active power loss, reactive power loss, and total voltage deviations (TVD) in a part of practical transmission network of Rajasthan Rajya Vidyut Prasaran Nigam Limited (RVPN) in southern parts of Rajasthan state of India. This is achieved by optimal deployment of optimally sized renewable energy (RE) generators using GOMOHSA. Performance indexes such as active power loss minimization index (APMLI), the reactive power loss minimization index (RPMLI), and the total voltage deviation improvement index (TVDII) are introduced to evaluate the health of the test network with different load scenarios. Performance of proposed GOMOHSA has been tested for five different operating scenarios of loads and RE generation. It is established that the proposed GOMOHSA finds the optimal deployment of optimally sized RE generators, and the investment cost of deployment of these RE generators can be recovered within a time period that is less than 5 years. Performance of GOMOHSA is superior compared to a conventional genetic algorithm (GA) in terms of performance indexes, RE generator capacity, payback period, and parameter sensitivity. Study is performed using MATLAB software for loading scenario of base year 2021 and projected year 2031.