Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Physics A: Mathematical and Theoretical, 2023

DOI: 10.1088/1751-8121/acc771

Links

Tools

Export citation

Search in Google Scholar

BPS surface operators and calibrations

Journal article published in 2023 by Nadav Drukker ORCID, Maxime Trépanier ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract We present here a careful study of the holographic duals of BPS surface operators in the 6d N = (2, 0) theory. Several different classes of surface operators have been recently identified and each class has a specific calibration form—a 3-form in AdS7 × S^4 whose pullback to the M2-brane world-volume is equal to the volume form. In all but one class, the appropriate forms are closed, so the action of the M2-brane is easily expressed in terms of boundary data, which is the geometry of the surface. Specifically, for surfaces of vanishing anomaly, it is proportional to the integral of the square of the extrinsic curvature. This can be extended to the case of surfaces with anomalies, by taking the ratio of two surfaces with the same anomaly. This gives a slew of new expectation values at large N in this theory.

For one specific class of surface operators, which are Lagrangian submanifolds of R^4 ⊂ R^6 , the structure is far richer and we find that the M2-branes are special Lagrangian submanifold of an appropriate six-dimensional almost Calabi-Yau submanifold of AdS7 × S^4. This allows for an elegant treatment of many such examples.