Published in

Oxford University Press, JAC-Antimicrobial Resistance, 3(4), 2022

DOI: 10.1093/jacamr/dlac054

Links

Tools

Export citation

Search in Google Scholar

Antimicrobial resistance in commensal Escherichia coli from humans and chickens in the Mekong Delta of Vietnam is driven by antimicrobial usage and potential cross-species transmission

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Objectives To investigate phenotypic antimicrobial resistance (AMR) in relation to antimicrobial use (AMU) and potential inter-species transmission among Escherichia coli from humans and chickens located in the same households in the Mekong Delta of Vietnam. Methods We collected data on AMU and faecal swabs from humans (N = 426) and chickens (N = 237) from 237 small-scale farms. From each sample, one E. coli strain was isolated and tested for its susceptibility against 11 antimicrobials by Sensititre AST. The association between AMR and AMU was investigated by logistic regression modelling. Using randomization, we compared the degree of similarity in AMR patterns between human and chicken E. coli from the same farms compared with isolates from different farms. Results The AMU rate was ∼19 times higher in chickens (291.1 per 1000 chicken-days) than in humans (15.1 per 1000 person-days). Isolates from chickens also displayed a higher prevalence of multidrug resistance (63.3%) than those of human origin (55.1%). AMU increased the probability of resistance in isolates from human (ORs between 2.1 and 5.3) and chicken (ORs between 1.9 and 4.8). E. coli from humans and chickens living on same farms had a higher degree of similarity in their AMR patterns than isolates from humans and chicken living on different farms. Conclusions We demonstrated the co-influence of AMU and potential transmission on observed phenotypic AMR patterns among E. coli isolates from food-producing animals and in-contact humans. Restricting unnecessary AMU alongside limiting interspecies contact (i.e. increasing hygiene and biocontainment) are essential for reducing the burden of AMR.