Published in

MDPI, Water, 7(15), p. 1290, 2023

DOI: 10.3390/w15071290

Links

Tools

Export citation

Search in Google Scholar

Characteristics of Malaysian Crude Oils and Measurement of ASP Flooded Water in Oil Emulsion Stability and Viscosity in Primary Separator

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

With the application of chemical enhanced oil recovery methods, water separation is a major issue in a production facility. Oil/water separation is suppressed with a stable emulsion. The present study evaluated the impact of different emulsifiers in enhanced oil recovery. The effectiveness of each additive such as an alkali, surfactant, or polymer on the stability of the emulsion was anticipated using laser scattering to measure the emulsion’s stability. An artificial neural network was applied to predict the effectiveness of the additives on stabilization/destabilization and to assess how alkali/surfactants, surfactant/polymers, and polymer/surfactants affect the separation profiles. Measurements of the viscosity and zeta potential of residual emulsion clarify that the increase in surfactant makes the emulsion stable and became unstable with the increase in the alkali and polymer. The droplet zeta potential was within −i9~−i5 mV. The absolute value of the zeta potential decreased at a high polymer concentration with a low surfactant concentration resulting in fast flocculence phenomena. With an increase in the surfactant concentration and the presence of high alkali, the droplet’s absolute zeta potential demonstrated an increase in the repulsion force in the emulsions. The study also focuses on the carbon number distribution, wax appearance temperature (WAT) and wax content of four crude oil samples from different field locations (Miri, Angsi, Penara and Dulang). Findings show that crude oil samples with higher mol percent of carbon distribution from C20 to C40 (paraffinic composition) contains higher wax content, wt% and subsequently results in higher wax appearance temperature (WAT). This is obviously shown by the crude oil sample from Penara field. Further similar investigation on other field locations will assist in characterizing the paraffinic composition in Malaysian oil basins.