Full text: Download
Abstract Key message Black pine and Maritime pine exhibit considerable differences in growth phenology across elevation belts with a 1-month delay for xylogenesis and increasing growth rates from low, mid to high elevations. Abstract Investigating seasonal wood formation is crucial to understand tree growth responses to climate impact. The present study quantifies the variability of xylogenesis along an elevation gradient on the Mediterranean island of Corsica, where two native pine species (Pinus nigra Arnold ssp. laricio Maire and Pinus pinaster Aiton) grow from the upper tree line to sea level, partly in sympatry. We extracted microcores from 35 trees at 5 sites along an East–West transect from the coasts (10 m asl) to the island's central mountain ridge (1600 m asl) during bi-weekly sampling campaigns between 2017 and 2019. We applied generalised additive models to detect radial growth differences in elevation and species along with minimum temperatures for growth initiation. We found that trees in low elevations experienced over 2 months longer growth periods with higher maximum growth rates than in high elevations. The results show a 1-month delay for the beginning of tracheid formation between the low, mid and high-elevation belts but comparable timing for its termination. At the sites where both species co-occur, P. nigra accumulates more radial cells in a shorter time than P. pinaster. Trees at the two contrasting coastal sites have similar growth period lengths, but exhibit a time shift of over a month. Minimum temperatures around growth initiation vary between 3.1 °C for P. nigra and 9.9 °C for P. pinaster. These findings emphasise the high plasticity in the growth behaviour of one of the most widespread tree genera in Mediterranean and temperate zones.