Published in

SpringerOpen, Earth, Planets and Space, 1(75), 2023

DOI: 10.1186/s40623-022-01754-8

Links

Tools

Export citation

Search in Google Scholar

Variations of the surface characteristics of Ryugu returned samples

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHayabusa2 spacecraft successfully collected rock samples from the surface of C-type near-Earth asteroid 162173 Ryugu through two touchdowns and brought them back to Earth in 2020. At the Extraterrestrial Sample Curation Center in JAXA, we performed initial description of all samples to obtain fundamental information and prepare the database for sample allocation. We propose morphological classifications for the returned samples based on the initial description of 205 grains described in the first 6 months. The returned samples can be distinguished by four morphological characteristics: dark, glossy, bright, and white. According to coordinated study to provide an initial description and detailed investigation by scanning electron microscopy and X-ray diffraction analysis in this study, these features reflect the differences in the degree of space weathering and mineral assemblages. The degree of space weathering of the four studied grain types is heterogeneous: weak for A0042 (dark group) and C0041 (white group); moderate for C0094 (glossy); and severe for A0017 (bright). The white phase, which is the mineral characteristic of the white group grains, is identified as large carbonate minerals. This is the first effort to classify Ryugu returned samples into distinct categories. Based on these results, researchers can estimate sample characteristics only from the information on the JAXA curation public database. It will be an important reference for sample selection for further investigation. Graphical Abstract