Published in

American Association for the Advancement of Science, Science, 6632(379), p. 572-575, 2023

DOI: 10.1126/science.abq4257

Links

Tools

Export citation

Search in Google Scholar

Genome structures resolve the early diversification of teleost fishes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Accurate species phylogenies are a prerequisite for all evolutionary research. Teleosts are the largest and most diversified group of extant vertebrates, but relationships among their three oldest extant lineages remain unresolved. On the basis of seven high-quality new genome assemblies in Elopomorpha (tarpons, eels), we revisited the topology of the deepest branches of the teleost phylogeny using independent gene sequence and chromosomal rearrangement phylogenomic approaches. These analyses converged to a single scenario that unambiguously places the Elopomorpha and Osteoglossomorpha (arapaima, elephantnose fish) in a monophyletic sister group to all other teleosts, i.e., the Clupeocephala lineage (zebrafish, medaka). This finding resolves more than 50 years of controversy on the evolutionary relationships of these lineages and highlights the power of combining different levels of genome-wide information to solve complex phylogenies.