Published in

MDPI, Atmosphere, 4(14), p. 643, 2023

DOI: 10.3390/atmos14040643

Links

Tools

Export citation

Search in Google Scholar

The Effect of the Cordillera Mountain Range on Tropical Cyclone Rainfall in the Northern Philippines

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this study, we examined the sensitivity of tropical cyclone (TC) characteristics and precipitation to the Cordillera Mountain Range (CMR) in Luzon, Philippines. Using the Weather Research and Forecasting (WRF) model, we simulated eight TCs with four different CMR orographic elevations: Control, Flat, Reduced, and Enhanced. We found that at significance level α=0.05, TC intensity significantly weakened as early as 21 h prior to landfall in the Enhanced experiment relative to the Control, whereas there was little change in the Flat and Reduced experiments. However, throughout the period when the TC crossed Luzon, we found no significant differences for TC movement speed and position in the different orographic elevations. When a TC made landfall, associated precipitation over the CMR increased as the mountain height increased. We further investigated the underpinning processes relevant to the effect of the CMR on precipitation by examining the effects of mountain slope, incoming perpendicular wind speed, and the moist Froude Number (Fw). Compared with other factors, TC precipitation was most strongly correlated with the strength of approaching winds multiplied by the mountain slope, i.e., stronger winds blowing up steeper mountain slopes caused higher amounts of precipitation. We also found that individually, Fw, mountain height, and upslope wind speeds were poor indicators of orographically induced precipitation. The effects of mountain range on TC rainfall varied with TC cases, highlighting the complexity of the mountain, wind, and rainfall relationship.