Published in

Oxford University Press, Journal of Experimental Botany, 20(74), p. 6224-6236, 2023

DOI: 10.1093/jxb/erad256

Links

Tools

Export citation

Search in Google Scholar

Regulation of climacteric fruit ripening in melon: recent advances and future challenges

Journal article published in 2023 by Marta Pujol ORCID, Jordi Garcia-Mas ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Fruit ripening is a complex and highly regulated process where tomato and strawberry have been the model species classically used for studying climacteric and non-climacteric fleshy fruit ripening types, respectively. Melon has emerged as an alternative ripening model because climacteric and non-climacteric cultivars exist, which makes it possible to dissect the regulation of ripening using a genetic approach. Several quantitative trait loci that regulate climacteric fruit ripening have been identified to date, and their combination in both climacteric and non-climacteric genetic backgrounds resulted in lines with different ripening behaviors, demonstrating that the climacteric intensity can be genetically modulated. This review discusses our current knowledge of the physiological changes observed during melon climacteric fruit ripening such as ethylene production, fruit abscission, chlorophyll degradation, firmness, and aroma, as well as their complex genetic control. From pioneer experiments in which ethylene biosynthesis was silenced, to the recent genetic edition of ripening regulators, current data suggest that the climacteric response is determined by the interaction of several loci under quantitative inheritance. The exploitation of the rich genetic diversity of melon will enable the discovery of additional genes involved in the regulation of the climacteric response, ultimately leading to breeding aromatic melon fruits with extended shelf life.