Published in

Frontiers Media, Frontiers in Sustainable Food Systems, (7), 2023

DOI: 10.3389/fsufs.2023.1074419

Links

Tools

Export citation

Search in Google Scholar

Closed-loop agriculture systems meta-research using text mining

Journal article published in 2023 by Michelle Ragany, May Haggag, Wael El-Dakhakhni, Benzhong Zhao ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The growing global population and climate change threaten the availability of many critical resources, and have been directly impacting the food and agriculture sector. Therefore, new cultivation technologies must be rapidly developed and implemented to secure the world's future food needs. Closed-loop greenhouse agriculture systems provide an opportunity to decrease resource reliance and increase crop yield. Greenhouses provide versatility in what can be grown and the resources required to function. Greenhouses can become highly efficient and resilient through the application of a closed-loop systems approach that prioritizes repurposing, reusing, and recirculating resources. Here, we employ a text mining approach to research the available research (meta-research) and publications within the area of closed-loop systems in greenhouses. This meta-research provides a clearer definition of the term “closed-loop system” within the context of greenhouses, as the term was previously vaguely defined. Using this meta-research approach, we identify six major existing research topic areas in closed-loop agriculture systems, which include: models and controls; food waste; nutrient systems; growing media; heating; and energy. Furthermore, we identify four areas that require further urgent work, which include the establishment of better connection between academic research to industry applications; clearer criteria surrounding growing media selection; critical operational requirements of a closed-loop system; and the functionality and synergy between the many modules that comprise a closed-loop greenhouse systems.