Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 2(946), p. 70, 2023

DOI: 10.3847/1538-4357/acb92e

Links

Tools

Export citation

Search in Google Scholar

Modest Dust Settling in the IRAS04302+2247 Class I Protoplanetary Disk

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present new Very Large Array observations, between 6.8 and 66 mm, of the edge-on Class I disk IRAS04302+2247. Observations at 6.8 mm and 9.2 mm lead to the detection of thermal emission from the disk, while shallow observations at the other wavelengths are used to correct for emission from other processes. The disk radial brightness profile transitions from broadly extended in previous Atacama Large Millimeter/submillimeter Array 0.9 mm and 2.1 mm observations to much more centrally brightened at 6.8 mm and 9.2 mm, which can be explained by optical depth effects. The radiative transfer modeling of the 0.9 mm, 2.1 mm, and 9.2 mm data suggests that the grains are smaller than 1 cm in the outer regions of the disk, allowing us to obtain the first lower limit for the scale height of grains emitting at millimeter wavelengths in a protoplanetary disk. We find that the millimeter dust scale height is between 1 au and 6 au at a radius 100 au from the central star, while the gas scale height is estimated to be about 7 au, indicating a modest level of settling. The estimated dust height is intermediate between less evolved Class 0 sources, which are found to be vertically thick, and more evolved Class II sources, which show a significant level of settling. This suggests that we are witnessing an intermediate stage of dust settling.