Published in

Wiley, Scandinavian Journal of Medicine and Science in Sports, 7(32), p. 1076-1088, 2022

DOI: 10.1111/sms.14155

Links

Tools

Export citation

Search in Google Scholar

Systematic review and meta‐analysis evaluating the effects electric bikes have on physiological parameters

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BackgroundThere is a universal need to increase the number of adults meeting physical activity (PA) recommendations to help improve health. In recent years, electrically assisted bicycles (e‐bikes) have emerged as a promising method for supporting people to initiate and maintain physical activity levels. To the best of our knowledge, there have been no meta‐analyses conducted to quantify the difference in physiological responses between e‐cycling with electrical assistance, e‐cycling without assistance, conventional cycling, and walking.MethodsA systematic review and meta‐analysis was conducted following PRISMA guidelines. We identified short‐term e‐bike studies, which utilized a crossover design comparing physiological outcomes when e‐cycling with electrical assistance, e‐cycling without electrical assistance, conventional cycling, or walking. Energy expenditure (EE), heart rate (HR), oxygen consumption (VO2), power output (PO), and metabolic equivalents (METs) outcomes were included within the meta‐analysis.ResultsFourteen studies met our inclusion criteria (N = 239). E‐cycling with electrical assistance resulted in a lower energy expenditure (EE) [SMD = −0.46 (−0.98, 0.06), p = 0.08], heart rate (HR) [MD = −11.41 (−17.15, −5.68), p < 0.000, beats per minute], oxygen uptake (VO2) [SMD = −0.57 (−0.96, −0.17), p = 0.005], power output (PO) [MD = −31.19 (−47.19 to −15.18), p = 0.000, Watts], and metabolic equivalent (MET) response [MD = −0.83 (−1.52, −0.14), p = 0.02, METs], compared with conventional cycling. E‐cycling with moderate electrical assistance resulted in a greater HR response [MD 10.38 (−1.48, 22.23) p = 0.09, beats per minute], and VO2 response [SMD 0.34 (−0.14, 0.82) p = 0.16] compared with walking.ConclusionsE‐cycling was associated with increased physiological responses that can confer health benefits.