Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Geophysical Research Letters, 18(50), 2023

DOI: 10.1029/2023gl104067

Links

Tools

Export citation

Search in Google Scholar

Surface‐Volume Scaling Controlled by Dissolution Regimes in a Multiphase Flow Environment

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractFluid‐rock dissolution occurs ubiquitously in geological systems. Surface‐volume scaling is central to predicting overall dissolution rate R involved in modeling dissolution processes. Previous works focused on single‐phase environments but overlooked the multiphase‐flow effect. Here, through limestone‐based microfluidics experiments, we establish a fundamental link between dissolution regimes and scaling laws. In regime I (uniform), the scaling is consistent with classic law, and a satisfactory prediction of R can be obtained. However, the scaling for regime II (localized) deviates significantly from classic law. The underlying mechanism is that the reaction‐induced gas phase forms a layer, acting as a barrier that hinders contact between the acid and rock. Consequently, the error between measurement and prediction continuously amplifies as dissolution proceeds; the predictability is poor. We propose a theoretical model that describes the regime transition, exhibiting excellent agreement with experimental results. This work offers guidance on the usage of scaling law in multiphase flow environments.