Published in

IOP Publishing, Superconductor Science and Technology, 6(35), p. 064003, 2022

DOI: 10.1088/1361-6668/ac6631

Links

Tools

Export citation

Search in Google Scholar

Disorder-induced 2D superconductivity in a NbTiN film grown on Si by ultrahigh-vacuum magneton sputtering

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe report on the growth and characterization of a niobium titanium nitride (NbTiN) film on a Si substrate prepared by ultrahigh vacuum sputtering. We show that the superconducting transition temperature is lower than those of high-quality NbTiN films. Interestingly, even though the zero-temperature Ginzburg-Landau coherence length (=9.77 nm) is significantly shorter than the film thickness (=86 nm), we are still able to observe the Berezinskii-Kosterlitz-Thouless-like transition, indicating the two-dimensional (2D) signature of our three-dimensional (3D) sample. We propose that the mechanism of hidden 2D superconducting property is similar to the recently reported results of the disordered induced 3D to 2D superconductor transition. We suggest further theoretical work is required for studying our new experimental results.