Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Agronomy, 11(11), p. 2237, 2021

DOI: 10.3390/agronomy11112237

Links

Tools

Export citation

Search in Google Scholar

Identification and Validation of a Novel Major QTL Controlling Leaf Pubescence in the Chinese Wheat Landrace ‘Baimaomai’

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Leaf pubescence is an important trait closely associated with plant adaptability to specialized habitats. Baimaomai (BMM) is a wheat (Triticum aestivum L.) landrace originating from the high-altitude, drought-prone environment of Sichuan Province, China with long, dense leaf pubescence. A population of 234 recombinant inbred lines (F10) developed from the cross between Chuanmai104 (CM104), which lacks leaf pubescence, and BMM with pubescent leaves, was used to conduct a phenotypic evaluation of leaf pubescence. Three quantitative trait loci (QTLs) were detected on chromosome arms 7BS, 3DL and 3AL using a high-density wheat 50K single-nucleotide polymorphism array in four environments. The QTLs were designated QLp.saas-7BS, QLp.saas-3DL and QLp.saas-3AL. QLp.saas-3AL, derived from BMM, and QLp.saas-3DL, derived from CM104, were new minor-effect loci. QLp.saas-7BS, derived from BMM, was a novel major-effect locus detected in all environments and was localized in a 0.48 Mb interval on chromosome arm 7BS based on the wheat ‘Chinese Spring’ reference genome. QLp.saas-7BS explained up to 40.77% of the total phenotypic variance. KASP markers tightly linked to QLp.saas-7BS were developed and verified. The present results provide valuable information for further fine mapping, cloning, and marker-assisted selection with QLp.saas-7BS in wheat.