Published in

American Association for Cancer Research, Clinical Cancer Research, 2024

DOI: 10.1158/1078-0432.ccr-23-2748

Links

Tools

Export citation

Search in Google Scholar

Circulating microRNA analysis in a prospective co-clinical trial identifies MIR652-3p as a response biomarker and driver of regorafenib resistance mechanisms in colorectal cancer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background: The multi-kinase inhibitor regorafenib has demonstrated efficacy in chemo-refractory metastatic colorectal cancer (mCRC) patients. However, lack of predictive biomarkers and concerns over significant toxicities hamper the use of regorafenib in clinical practice. Methods: Serial liquid biopsies were obtained at baseline and monthly until disease progression in chemo-refractory mCRC patients treated with regorafenib in a phase II clinical trial (PROSPECT-R n=40; NCT03010722) and in a multicentric validation cohort (n=241). Tissue biopsies collected at baseline, after 2 months and at progression in the PROSPECT-R trial were used to establish Patient-Derived Organoids (PDOs) and for molecular analyses. MicroRNA profiling was performed on baseline bloods using the NanoString nCounter platform and results were validated by digital droplet PCR and/or In Situ Hybridization in paired liquid and tissue biopsies. PDOs co-cultures and PDO-xenotransplants were generated for functional analyses. Results: Large-scale microRNA expression analysis in longitudinal matched liquid and tissue biopsies from the PROSPECT-R trial identified MIR652-3p as a biomarker of clinical benefit to regorafenib. These findings were confirmed in an independent validation cohort and in a “control” group of 100 patients treated with lonsurf. Using ex vivo co-culture assays paired with single-cell RNA-sequencing of PDO established pre- and post-treatment, we modelled regorafenib response observed in vivo and in patients, and showed that MIR652-3p controls resistance to regorafenib by impairing regorafenib-induced lethal autophagy and by orchestrating the switch from neo-angiogenesis to vessel co-option. Conclusions: Our results identify MIR652-3p as potential biomarker and as a driver of cell and non-cell autonomous mechanisms of resistance to regorafenib.