Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Cancers, 12(15), p. 3246, 2023

DOI: 10.3390/cancers15123246

Links

Tools

Export citation

Search in Google Scholar

A Clinical Risk Model for Personalized Screening and Prevention of Breast Cancer

Journal article published in 2023 by Mikael Eriksson ORCID, Kamila Czene ORCID, Celine Vachon, Emily F. Conant, Per Hall ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Image-derived artificial intelligence (AI) risk models have shown promise in identifying high-risk women in the short term. The long-term performance of image-derived risk models expanded with clinical factors has not been investigated. Methods: We performed a case–cohort study of 8110 women aged 40–74 randomly selected from a Swedish mammography screening cohort initiated in 2010 together with 1661 incident BCs diagnosed before January 2022. The imaging-only AI risk model extracted mammographic features and age at screening. Additional lifestyle/familial risk factors were incorporated into the lifestyle/familial-expanded AI model. Absolute risks were calculated using the two models and the clinical Tyrer–Cuzick v8 model. Age-adjusted model performances were compared across the 10-year follow-up. Results: The AUCs of the lifestyle/familial-expanded AI risk model ranged from 0.75 (95%CI: 0.70–0.80) to 0.68 (95%CI: 0.66–0.69) 1–10 years after study entry. Corresponding AUCs were 0.72 (95%CI: 0.66–0.78) to 0.65 (95%CI: 0.63–0.66) for the imaging-only model and 0.62 (95%CI: 0.55–0.68) to 0.60 (95%CI: 0.58–0.61) for Tyrer–Cuzick v8. The increased performances were observed in multiple risk subgroups and cancer subtypes. Among the 5% of women at highest risk, the PPV was 5.8% using the lifestyle/familial-expanded model compared with 5.3% using the imaging-only model, p < 0.01, and 4.6% for Tyrer–Cuzick, p < 0.01. Conclusions: The lifestyle/familial-expanded AI risk model showed higher performance for both long-term and short-term risk assessment compared with imaging-only and Tyrer–Cuzick models.