Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, Mobile Information Systems, (2021), p. 1-10, 2021

DOI: 10.1155/2021/4310321

Links

Tools

Export citation

Search in Google Scholar

Recognition of Ziziphus lotus through Aerial Imaging and Deep Transfer Learning Approach

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

There is a growing demand for the detection of endangered plant species through machine learning approaches. Ziziphus lotus is an endangered deciduous plant species in the buckthorn family (Rhamnaceae) native to Southern Europe. Traditional methods such as object-based image analysis have achieved good recognition rates. However, they are slow and require high human intervention. Transfer learning-based methods have several applications for data analysis in a variety of Internet of Things systems. In this work, we have analyzed the potential of convolutional neural networks to recognize and detect the Ziziphus lotus plant in remote sensing images. We fine-tuned Inception version 3, Xception, and Inception ResNet version 2 architectures for binary classification into plant species class and bare soil and vegetation class. The achieved results are promising and effectively demonstrate the better performance of deep learning algorithms over their counterparts.