Published in

Nature Research, Scientific Reports, 1(13), 2023

DOI: 10.1038/s41598-022-26871-y

Links

Tools

Export citation

Search in Google Scholar

Pilot study of optical coherence tomography angiography-derived microvascular metrics in hands and feet of healthy and diabetic people

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOptical coherence tomography angiography (OCTA) is a non-invasive, high-resolution imaging modality with growing application in dermatology and microvascular assessment. Accepted reference values for OCTA-derived microvascular parameters in skin do not yet exist but need to be established to drive OCTA into the clinic. In this pilot study, we assess a range of OCTA microvascular metrics at rest and after post-occlusive reactive hyperaemia (PORH) in the hands and feet of 52 healthy people and 11 people with well-controlled type 2 diabetes mellitus (T2DM). We calculate each metric, measure test–retest repeatability, and evaluate correlation with demographic risk factors. Our study delivers extremity-specific, age-dependent reference values and coefficients of repeatability of nine microvascular metrics at baseline and at the maximum of PORH. Significant differences are not seen for age-dependent microvascular metrics in hand, but they are present for several metrics in the foot. Significant differences are observed between hand and foot, both at baseline and maximum PORH, for most of the microvascular metrics with generally higher values in the hand. Despite a large variability over a range of individuals, as is expected based on heterogeneous ageing phenotypes of the population, the test–retest repeatability is 3.5% to 18% of the mean value for all metrics, which highlights the opportunities for OCTA-based studies in larger cohorts, for longitudinal monitoring, and for assessing the efficacy of interventions. Additionally, branchpoint density in the hand and foot and changes in vessel diameter in response to PORH stood out as good discriminators between healthy and T2DM groups, which indicates their potential value as biomarkers. This study, building on our previous work, represents a further step towards standardised OCTA in clinical practice and research.