Published in

American Institute of Physics, Applied Physics Letters, 21(122), 2023

DOI: 10.1063/5.0142666

Links

Tools

Export citation

Search in Google Scholar

Electron beam-induced brownmillerite–perovskite phase transition in La0.6Sr0.4CoO3−<b> δ </b>

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The electron beam, during high-resolution transmission electron microscopy, was employed to induce a phase transition in La0.6Sr0.4CoO2.5 (LSC) from a brownmillerite ordering to an oxygen deficient perovskite structure. Prior to irradiation, a strongly alternating out-of-plane lattice parameter was observed, reflecting electrostatic interactions between AO and BO/BO2 planes in the brownmillerite ordering. During electron beam irradiation for one hour, the oxygen vacancy ordering vanished gradually, and a uniform cubic perovskite structure prevailed. To exclude beam-induced heating effects, in situ heating experiments were performed, revealing a stable brownmillerite ordering in the relevant temperature range (up to at least 500 °C). Thus, we conclude that the phase transition is caused by knock-on processes that affect oxygen vacancies in terms of a transition from structural vacancies toward extremely high concentrations of randomly distributed point defects in the ABO3 structure.