Published in

Oxford University Press, EP Europace, 2(26), 2024

DOI: 10.1093/europace/euae029

Links

Tools

Export citation

Search in Google Scholar

Yield of molecular autopsy in sudden cardiac death in athletes: data from a large registry in the UK

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Aims Sudden cardiac death (SCD) may occur in apparently healthy individuals, including athletes. The aim was to investigate the diagnostic role of post-mortem genetic testing, molecular autopsy (MA), in elucidating the cause of SCD in athletes. Methods and results We reviewed a database of 6860 consecutive cases of SCD referred to our specialist cardiac pathology centre. All cases underwent detailed cardiac autopsy, and 748 were deemed to be athletes. Of these, 42 (6%) were investigated with MA (28 using a targeted sequencing, 14 exome sequencing). Variants were classified as pathogenic, likely pathogenic, or variant of unknown significance using international guidelines. Clinical information was obtained from referring coroners who completed a detailed health questionnaire. Out of the 42 decedents (average age 35 years old, 98% males) who were investigated with MA, the autopsy was in keeping with a structurally normal heart [sudden arrhythmic death syndrome (SADS)] in n = 33 (78%) cases, followed by arrhythmogenic cardiomyopathy (ACM) in eight (19%) individuals and idiopathic left ventricular fibrosis in one (2%). Death occurred during exercise and at rest in 26 (62%) and 16 (38%) individuals, respectively. Variants that were adjudicated clinically actionable were present in seven cases (17%). There was concordance between the genetic and phenotypic findings in two cases of ACM (in FLNC and TMEM43 genes). None of the variants identified in SADS cases were previously linked to channelopathies. Clinically actionable variants in cardiomyopathy-associated genes were found in five cases of SADS. Conclusion The yield of MA in athletes who died suddenly is 17%. In SADS cases, clinically actionable variants were found in cardiomyopathy-associated genes and not in channelopathy-associated genes. Arrhythmogenic cardiomyopathy is a common cause of SCD in athletes, and one in four decedents with this condition had a clinically actionable variant in FLNC and TMEM43 genes.