Lippincott, Williams & Wilkins, Journal of Public Health Management and Practice, 2(29), p. 162-173, 2023
DOI: 10.1097/phh.0000000000001693
Full text: Unavailable
Context: Electronic health record (EHR) data can potentially make chronic disease surveillance more timely, actionable, and sustainable. Although use of EHR data can address numerous limitations of traditional surveillance methods, timely surveillance data with broad population coverage require scalable systems. This report describes implementation, challenges, and lessons learned from the Multi-State EHR-Based Network for Disease Surveillance (MENDS) to help inform how others work with EHR data to develop distributed networks for surveillance. Program: Funded by the Centers for Disease Control and Prevention (CDC), MENDS is a data modernization demonstration project that aims to develop a timely national chronic disease sentinel surveillance system using EHR data. It facilitates partnerships between data contributors (health information exchanges, other data aggregators) and data users (state and local health departments). MENDS uses query and visualization software to track local emerging trends. The program also uses statistical and geospatial methods to generate prevalence estimates of chronic disease risk measures at the national and local levels. Resulting data products are designed to inform public health practice and improve the health of the population. Implementation: MENDS includes 5 partner sites that leverage EHR data from 91 health system and clinic partners and represents approximately 10 million patients across the United States. Key areas of implementation include governance, partnerships, technical infrastructure and support, chronic disease algorithms and validation, weighting and modeling, and workforce education for public health data users. Discussion: MENDS presents a scalable distributed network model for implementing national chronic disease surveillance that leverages EHR data. Priorities as MENDS matures include producing prevalence estimates at various geographic and subpopulation levels, developing enhanced data sharing and interoperability capacity using international data standards, scaling the network to improve coverage nationally and among underrepresented geographic areas and subpopulations, and expanding surveillance of additional chronic disease measures and social determinants of health.