Published in

American Association for the Advancement of Science, Science, 6624(378), p. 1097-1104, 2022

DOI: 10.1126/science.abl5829

Links

Tools

Export citation

Search in Google Scholar

IFITM proteins assist cellular uptake of diverse linked chemotypes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The search for cell-permeable drugs has conventionally focused on low-molecular weight (MW), nonpolar, rigid chemical structures. However, emerging therapeutic strategies break traditional drug design rules by employing flexibly linked chemical entities composed of more than one ligand. Using complementary genome-scale chemical-genetic approaches we identified an endogenous chemical uptake pathway involving interferon-induced transmembrane proteins (IFITMs) that modulates the cell permeability of a prototypical biopic inhibitor of MTOR (RapaLink-1, MW: 1784 g/mol). We devised additional linked inhibitors targeting BCR-ABL1 (DasatiLink-1, MW: 1518 g/mol) and EIF4A1 (BisRoc-1, MW: 1466 g/mol), uptake of which was facilitated by IFITMs. We also found that IFITMs moderately assisted some proteolysis-targeting chimeras and examined the physicochemical requirements for involvement of this uptake pathway.