Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Physics of Plasmas, 5(29), 2022

DOI: 10.1063/5.0087215

Links

Tools

Export citation

Search in Google Scholar

Studying the Richtmyer–Meshkov instability in convergent geometry under high energy density conditions using the Decel platform

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The “Decel” platform at Sandia National Laboratories investigates the Richtmyer–Meshkov instability (RMI) in converging geometry under high energy density conditions [Knapp et al., Phys. Plasmas 27, 092707 (2020)]. In Decel, the Z machine magnetically implodes a cylindrical beryllium liner filled with liquid deuterium, launching a converging shock toward an on-axis beryllium rod machined with sinusoidal perturbations. The passage of the shock deposits vorticity along the Be/D2 interface, causing the perturbations to grow. In this paper, we present platform improvements along with recent experimental results. To improve the stability of the imploding liner to the magneto Rayleigh–Taylor instability, we modified its acceleration history by shortening the Z electrical current pulse. Next, we introduce a “split rod” configuration that allows two axial modes to be fielded simultaneously in different axial locations along the rod, doubling our data per experiment. We then demonstrate that asymmetric slots in the return current structure modify the magnetic drive pressure on the surface of the liner, advancing the evolution on one side of the rod by multiple ns compared to its 180° counterpart. This effectively enables two snapshots of the instability at different stages of evolution per radiograph with small deviations of the cross-sectional profile of the rod from the circular. Using this platform, we acquired RMI data at 272 and 157 μm wavelengths during the single shock stage. Finally, we demonstrate the utility of these data for benchmarking simulations by comparing calculations using ALEGRA MHD and RageRunner.