Published in

Wiley, Journal of Geophysical Research. Space Physics, 9(127), 2022

DOI: 10.1029/2022ja030315

Links

Tools

Export citation

Search in Google Scholar

Stability Characteristics of the Mesopause Region Above the Andes

Journal article published in 2022 by Fan Yang ORCID, Alan Z. Liu ORCID
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe report a detailed analysis of atmospheric stabilities in the mesopause region (85–100 km) based on over 2,000 hr of high‐resolution temperature and horizontal wind measurements made with a Na lidar at the Andes Lidar Observatory, located in Cerro Pachón, Chile (30.25°S, 70.74°W). The square of Brunt–Väisälä frequency and the Richardson number are calculated, and occurrence probabilities of convective and dynamic instabilities are derived. An approach to assess the biases due to measurement uncertainties is used to obtain more accurate occurrence probabilities. The overall occurrence probabilities of convective and dynamic instabilities are 2.7% and 6.7%, respectively. High‐, medium‐, and low‐ frequency gravity wave (GW) contributions to these probabilities are isolated, which show that the high‐frequency GWs contribute most but simultaneous presence of high‐ and medium frequency GWs is much more effective in increasing the probabilities. Convective and dynamic instabilities are mainly generated because of the joint effect of different‐scale GWs. Isolated parts of GWs have much less contribution to the generation of both convective and dynamic instabilities. The dynamic instability is mainly contributed from less stable stratification and large wind shear together. Either factor can lead to about 15% of dynamic instability.