Published in

SAGE Publications, Statistical Methods in Medical Research, 1(32), p. 100-117, 2022

DOI: 10.1177/09622802221130580

Links

Tools

Export citation

Search in Google Scholar

Complete effect decomposition for an arbitrary number of multiple ordered mediators with time-varying confounders: A method for generalized causal multi-mediation analysis

Journal article published in 2022 by An-Shun Tai ORCID, Sheng-Hsuan Lin ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Causal mediation analysis is advantageous for mechanism investigation. In settings with multiple causally ordered mediators, path-specific effects have been introduced to specify the effects of certain combinations of mediators. However, most path-specific effects are unidentifiable. An interventional analog of path-specific effects is adapted to address the non-identifiability problem. Moreover, previous studies only focused on cases with two or three mediators due to the complexity of the mediation formula in a large number of mediators. In this study, we provide a generalized definition of traditional path-specific effects and interventional path-specific effects with a recursive formula, along with the required assumptions for nonparametric identification. Subsequently, a general approach is developed with an arbitrary number of multiple ordered mediators and with time-varying confounders. All methods and software proposed in this study contribute to comprehensively decomposing a causal effect confirmed by data science and help disentangling causal mechanisms in the presence of complicated causal structures among multiple mediators.