Published in

American Institute of Physics, Journal of Vacuum Science and Technology A, 6(40), 2022

DOI: 10.1116/6.0002151

Links

Tools

Export citation

Search in Google Scholar

Diffusion-assisted molecular beam epitaxy of CuCrO2 thin films

Journal article published in 2022 by Gaurab Rimal ORCID, Alessandro R. Mazza, Matthew Brahlek ORCID, Seongshik Oh ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Using molecular beam epitaxy (MBE) to grow multielemental oxides (MEOs) is generally challenging, partly due to difficulty in stoichiometry control. Occasionally, if one of the elements is volatile at the growth temperature, stoichiometry control can be greatly simplified using adsorption-controlled growth mode. Otherwise, stoichiometry control remains one of the main hurdles to achieving high-quality MEO film growths. Here, we report another kind of self-limited growth mode, dubbed diffusion-assisted epitaxy, in which excess species diffuses into the substrate and leads to the desired stoichiometry, in a manner similar to the conventional adsorption-controlled epitaxy. Specifically, we demonstrate that using diffusion-assisted epitaxy, high-quality epitaxial CuCrO2 films can be grown over a wide growth window without precise flux control using MBE.