Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astronomical Journal, 4(162), p. 141, 2021

DOI: 10.3847/1538-3881/ac0dc1

Links

Tools

Export citation

Search in Google Scholar

VLBI Data Processing on Coronal Radio-sounding Experiments of Mars Express

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The ESA’s Mars Express solar corona experiments were performed at two solar conjunctions in the years 2015 and 2017 by a number of radio telescopes in the European VLBI Network. This paper presents the methods to measure the frequency and phase fluctuations of the spacecraft radio signal, and the applications to study the characteristics of the plasma turbulence effects on the signal at a single station and at multiple stations via cross correlation. The power spectra of the frequency fluctuations observed between 4.9 and 76.3 R s have a power-law shape close to a Kolmogorov spectrum over the frequency interval ν lo < ν < ν up, where the nominal value of ν lo is set to 3 mHz and ν up is in the range of 0.03–0.15 Hz. The rms of the frequency fluctuations is presented as a function of the heliocentric distance. Furthermore, we analyze the variations of the electron column density fluctuations at solar offsets 4.9 R s and 9.9 R s and the cross-correlation products between the VLBI stations. The power density of the differential fluctuations between different stations decreases at ν < 0.01 Hz. Finally, the fast flow speeds of solar wind >700 km s−1 are derived from the cross correlation of frequency fluctuations at ν < 0.01 Hz. The fast flow speeds of solar wind correspond to the high heliolatitude of the coronal region that the radio rays passed. The VLBI observations and analysis methods can be used to study the electron column density fluctuations and the turbulence at multiple spatial points in the inner solar wind by providing multiple lines of sight between the Earth and the spacecraft.