Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biophysical Journal, 3(122), p. 462a, 2023

DOI: 10.1016/j.bpj.2022.11.2482

Cambridge University Press, Biological Imaging, (3), 2023

DOI: 10.1017/s2633903x23000107

Links

Tools

Export citation

Search in Google Scholar

Ot2Rec: A semi-automatic, extensible, multi-software tomographic reconstruction workflow

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Electron cryo-tomography is an imaging technique for probing 3D structures with at the nanometer scale. This technique has been used extensively in the biomedical field to study the complex structures of proteins and other macromolecules. With the advancement in technology, microscopes are currently capable of producing images amounting to terabytes of data per day, posing great challenges for scientists as the speed of processing of the images cannot keep up with the ever-higher throughput of the microscopes. Therefore, automation is an essential and natural pathway on which image processing—from individual micrographs to full tomograms—is developing. In this paper, we present Ot2Rec, an open-source pipelining tool which aims to enable scientists to build their own processing workflows in a flexible and automatic manner. The basic building blocks of Ot2Rec are plugins which follow a unified application programming interface structure, making it simple for scientists to contribute to Ot2Rec by adding features which are not already available. In this paper, we also present three case studies of image processing using Ot2Rec, through which we demonstrate the speedup of using a semi-automatic workflow over a manual one, the possibility of writing and using custom (prototype) plugins, and the flexibility of Ot2Rec which enables the mix-and-match of plugins. We also demonstrate, in the Supplementary Material, a built-in reporting feature in Ot2Rec which aggregates the metadata from all process being run, and output them in the Jupyter Notebook and/or HTML formats for quick review of image processing quality. Ot2Rec can be found at https://github.com/rosalindfranklininstitute/ot2rec.