Published in

Oxford University Press, Annals of Work Exposures and Health, Supplement_1(66), p. i23-i55, 2022

DOI: 10.1093/annweh/wxab093

Links

Tools

Export citation

Search in Google Scholar

Exposure Group Development in Support of the NIEHS GuLF Study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIn the GuLF Study, a study investigating possible adverse health effects associated with work on the oil spill response and clean-up (OSRC) following the Deepwater Horizon disaster in the Gulf of Mexico, we used a job-exposure matrix (JEM) approach to estimate exposures. The JEM linked interview responses of study participants to measurement data through exposure groups (EGs). Here we describe a systematic process used to develop transparent and precise EGs that allowed characterization of exposure levels among the large number of OSRC activities performed across the Gulf of Mexico over time and space. EGs were identified by exposure determinants available to us in our measurement database, from a substantial body of other spill-related information, and from responses provided by study participants in a detailed interview. These determinants included: job/activity/task, vessel and type of vessel, weathering of the released oil, area of the Gulf of Mexico, Gulf coast state, and time period. Over 3000 EGs were developed for inhalation exposure and applied to each of 6 JEMs of oil-related substances (total hydrocarbons, benzene, toluene, ethylbenzene, total xylene, and n-hexane). Subsets of those EGs were used for characterization of exposures to dispersants, particulate matter, and oil mist. The EGs allowed assignment to study participants of exposure estimates developed from measurement data or from estimation models through linkage in the JEM for the investigation of exposure-response relationships.