Published in

American Institute of Physics, Physics of Fluids, 12(33), 2021

DOI: 10.1063/5.0075440

Links

Tools

Export citation

Search in Google Scholar

The influence of the coefficient of restitution on flow regimes within horizontal particle-laden pipe flows

Journal article published in 2021 by Xinchen Zhang ORCID, Graham J. Nathan ORCID, Zhao F. Tian ORCID, Rey C. Chin ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Numerical simulations of the particle-laden gas–solid flow in horizontal circular pipes have been used to identify the role of particle collision coefficients in flow regimes within it. A four-way coupling Euler–Lagrangian approach was employed, using direct numerical simulations of the gas phase and Lagrangian particle tracking to account for the drag, gravitational and lift forces, together with particle–wall and inter-particle interactions. The influences on the flow of the mass loading ratio (Φm) and of the coefficients of restitution for collisions both between particles and the wall (ep−w) and between particles (ep−p) are assessed by examining the fluid and particle velocities, particle concentration distribution, turbulence kinetic energy, static pressure, inter-phase transferred momentum, and the secondary flow motions of both the fluid and particle phases. Three dominant flow regimes that include three sub-regimes based on their secondary flow patterns are identified, the transition between which depends on the combination of Φm, ep−w, and ep−p. Additionally, the quantitative dependence of these transitions on these three parameters is also reported for a series of Stokes and Froude numbers.