Published in

Oxford University Press, American Journal of Epidemiology, 9(191), p. 1532-1539, 2021

DOI: 10.1093/aje/kwab246

Links

Tools

Export citation

Search in Google Scholar

Environmental Influences on Sleep in the California Teachers Study Cohort

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Only two-thirds of Americans meet the recommended 7 hours of sleep nightly. Insufficient sleep and circadian disruption have been associated with adverse health outcomes, including diabetes and cardiovascular disease. Several environmental disruptors of sleep have been reported, such as artificial light at night (ALAN) and noise. These studies tended to evaluate exposures individually. We evaluated several spatially derived environmental exposures (ALAN, noise, green space, and air pollution) and self-reported sleep outcomes obtained in 2012–2015 in a large cohort of 51,562 women in the California Teachers Study. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for sleep duration and latency. After adjusting for age, race/ethnicity, chronotype, use of sleep medication, and self-reported trouble sleeping, ALAN (per 5 millicandela (mcd)/m2 luminance, OR = 1.13, 95% CI: 1.07, 1.20) and air pollution (per 5 μg/m3 PM2.5, OR = 1.06, 95% CI: 1.04, 1.09) were associated with shorter sleep duration (<7 hours), and noise was associated with longer latency (>15 minutes) (per 10 decibels, OR = 1.05, 95% CI: 1.01, 1.10). Green space was associated with increased duration (per 0.1 units, OR = 0.41, 95% CI: 0.28, 0.60) and decreased latency (per 0.1 units, OR = 0.55, 95% CI: 0.39, 0.78). Further research is necessary to understand how these and other exposures (e.g., diet) perturb an individuals’ inherited sleep patterns and contribute to downstream health outcomes.