Published in

American Astronomical Society, Astrophysical Journal, 1(954), p. 9, 2023

DOI: 10.3847/1538-4357/acdd5e

Links

Tools

Export citation

Search in Google Scholar

Hard X-Ray Observation and Multiwavelength Study of the PeVatron Candidate Pulsar Wind Nebula “Dragonfly”

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We studied the PeVatron nature of the pulsar wind nebula (PWN) G75.2+0.1 (“Dragonfly”) as part of our NuSTAR observational campaign of energetic PWNe. The Dragonfly is spatially coincident with LHAASO J2018+3651, whose maximum photon energy is 0.27 PeV. We detected a compact (radius 1 ′ ) inner nebula of the Dragonfly without a spectral break in 3–20 keV using NuSTAR. A joint analysis of the inner nebula with archival Chandra and XMM-Newton (XMM) observations yields a power-law spectrum with Γ = 1.49 ± 0.03. Synchrotron burnoff is observed from the shrinkage of the NuSTAR nebula at higher energies, from which we infer the magnetic field in the inner nebula of 24 μG at 3.5 kpc. Our analysis of archival XMM data and 13 yr of Fermi-LAT data confirms the detection of an extended ( ∼ 10 ′ ) outer nebula in 2–6 keV (Γ = 1.82 ± 0.03) and the nondetection of a GeV nebula, respectively. Using the VLA, XMM, and HAWC data, we modeled a multiwavelength spectral energy distribution of the Dragonfly as a leptonic PeVatron. The maximum injected particle energy of 1.4 PeV from our model suggests that the Dragonfly is likely a PeVatron. Our model prediction of the low magnetic field (2.7 μG) in the outer nebula and recent interaction with the host supernova remnant’s reverse shock (4 kyr ago) align with common features of PeVatron PWNe. The origin of its highly asymmetric morphology, pulsar proper motion, PWN–supernova remnant (SNR) interaction, and source distance will require further investigations in the future, including a multiwavelength study using radio, X-ray, and gamma-ray observations.