Published in

Wiley, Chemistry - A European Journal, 17(29), 2023

DOI: 10.1002/chem.202203893

Links

Tools

Export citation

Search in Google Scholar

High‐T<sub>c</sub> 1D Phase‐Transition Semiconductor Photoluminescent Material with Broadband Emission

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractOne dimensional (1D) organic‐inorganic halide hybrid perovskites have the advantages of excellent organic cation modifiability and diversity of inorganic framework structures, which cannot be ignored in the development of multi‐functional phase‐transition materials in photoelectric and photovoltaic devices. Here, we have successfully modified and synthesized an organic‐inorganic hybrid perovskite photoelectric multifunctional phase‐transition material: [C7H13ONCH2F]⋅PbBr3 (1). The synergistic effect of the order double disorder transition of organic cations and the change of the degree of distortion of the inorganic framework leads to its high temperature reversible phase‐transition point of Tc=374 K/346 K and its ultra‐low loss high‐quality dielectric switch response. Through in‐depth research and calculation, compound 1 also has excellent semiconductor characteristics with a band gap of 3.06 eV and the photoluminescence characteristics of self‐trapped exciton (STE) broadband emission. Undoubtedly, this modification strategy provides a new choice for the research field of organic‐inorganic hybrid perovskite reversible phase‐transition photoelectric multifunctional materials with rich coupling properties.