Published in

International Union of Crystallography, Journal of Synchrotron Radiation, 6(29), p. 1354-1367, 2022

DOI: 10.1107/s1600577522008736

Links

Tools

Export citation

Search in Google Scholar

A fast and lightweight tool for partially coherent beamline simulations in fourth-generation storage rings based on coherent mode decomposition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new algorithm to perform coherent mode decomposition of undulator radiation is proposed. It is based on separating the horizontal and vertical directions, reducing the problem by working with one-dimension wavefronts. The validity conditions of this approximation are discussed. Simulations require low computer resources and run interactively on a laptop. The focusing with lenses of the radiation emitted by an undulator in a fourth-generation storage ring (EBS-ESRF) is studied. Results are compared against multiple optics packages implementing a variety of methods for dealing with partial coherence: full two-dimension coherent mode decomposition, Monte Carlo combination of wavefronts from electrons entering the undulator with different initial conditions, and hybrid ray-tracing correcting geometrical optics with wave optics.