Published in

Wiley, Angewandte Chemie, 50(135), 2023

DOI: 10.1002/ange.202313063

Wiley, Angewandte Chemie International Edition, 50(62), 2023

DOI: 10.1002/anie.202313063

Links

Tools

Export citation

Search in Google Scholar

Glutathione Mediates Control of Dual Differential Bio‐orthogonal Labelling of Biomolecules

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractTraditional approaches to bio‐orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio‐orthogonal reagents. Here we demonstrate that GSH promotes a Cu‐catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH‐mediated reactivity gradient is then utilised in the dual sequential bio‐orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.