Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 19(118), 2021

DOI: 10.1073/pnas.2024251118

Links

Tools

Export citation

Search in Google Scholar

ICAM-1 induced rearrangements of capsid and genome prime rhinovirus 14 for activation and uncoating

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

SignificanceMedical visits and missed days of school and work caused by rhinoviruses cost tens of billions of US dollars annually. Currently, there are no antivirals against rhinoviruses, and the available treatments only treat the symptoms. Here, we present the molecular structure of human rhinovirus 14 in complex with its cellular receptor intercellular adhesion molecule 1. The binding of the virus to its receptor initiates the infection. Knowledge of the structure of the human rhinovirus 14–intercellular adhesion molecule 1 interface and mechanism of interaction provides the basis for the design of compounds that may block the binding of rhinoviruses to receptors and thus prevent infection.