Published in

BMJ Publishing Group, Journal of Epidemiology and Community Health, 9(77), p. 610-616, 2023

DOI: 10.1136/jech-2023-220435

Links

Tools

Export citation

Search in Google Scholar

Systems science methods in public health: what can they contribute to our understanding of and response to the cost-of-living crisis?

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BackgroundMany complex public health evidence gaps cannot be fully resolved using only conventional public health methods. We aim to familiarise public health researchers with selected systems science methods that may contribute to a better understanding of complex phenomena and lead to more impactful interventions. As a case study, we choose the current cost-of-living crisis, which affects disposable income as a key structural determinant of health.MethodsWe first outline the potential role of systems science methods for public health research more generally, then provide an overview of the complexity of the cost-of-living crisis as a specific case study. We propose how four systems science methods (soft systems, microsimulation, agent-based and system dynamics models) could be applied to provide more in-depth understanding. For each method, we illustrate its unique knowledge contributions, and set out one or more options for studies that could help inform policy and practice responses.ResultsDue to its fundamental impact on the determinants of health, while limiting resources for population-level interventions, the cost-of-living crisis presents a complex public health challenge. When confronted with complexity, non-linearity, feedback loops and adaptation processes, systems methods allow a deeper understanding and forecasting of the interactions and spill-over effects common with real-world interventions and policies.ConclusionsSystems science methods provide a rich methodological toolbox that complements our traditional public health methods. This toolbox may be particularly useful in early stages of the current cost-of-living crisis: for understanding the situation, developing solutions and sandboxing potential responses to improve population health.