Published in

Wiley, Advanced Optical Materials, 14(11), 2023

DOI: 10.1002/adom.202300223

Links

Tools

Export citation

Search in Google Scholar

All‐Optical Nonlinear Neuron Based on Metallic Quantum Wells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractOptical nonlinear neuron, as an essential implementation method for optical interconnection, could greatly promote the development of optical neuron networks, which appears to be a promising alternative to electronic neural networks that are limited by computing speed and the end of Moore's law. However, restricted by weak nonlinearities, the modulation performance of optical nonlinear neuron networks is much lower compared to their electronic counterparts. Therefore, an effectual all‐optical nonlinear neuron is proposed by combining a double‐ring resonator with field‐enhancement and metallic quantum wells (MQWs) with a large Kerr nonlinear response. Based on the large and ultrafast Kerr nonlinearity provided by MQWs, the device can achieve a modulation extinction ratio of 18.78 dB and a transition rate of 13 GW cm−2 per 3 dB. The work may provide a new route for integrated, ultrafast, and high‐efficient optical nonlinear neurons for on‐chip neuron networks.