Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 21(23), p. 13635, 2022

DOI: 10.3390/ijms232113635

Links

Tools

Export citation

Search in Google Scholar

Effects of Biochar and Nitrogen Application on Rice Biomass Saccharification, Bioethanol Yield and Cell Wall Polymers Features

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Rice is a major food crop that produces abundant biomass wastes for biofuels. To improve rice biomass and yield, nitrogen (N) fertilizer is excessively used, which is not eco-friendly. Alternatively, biochar (B) application is favored to improve rice biomass and yield under low chemical fertilizers. To minimize the reliance on N fertilizer, we applied four B levels (0, 10, 20, and 30 t B ha−1) combined with two N rates (low-135 and high-180 kg ha−1) to improve biomass yield. Results showed that compared to control, the combined B at 20–30 t ha−1 with low N application significantly improved plant dry matter and arabinose (Ara%), while decreasing cellulose crystallinity (Crl), degree of polymerization (DP), and the ratio of xylose/arabinose (Xyl/Ara), resulting in high hexoses (% cellulose) and bioethanol yield (% dry matter). We concluded that B coupled with N can alter cell wall polymer features in paddy rice resulting in high biomass saccharification and bioethanol production.