Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Clinical Psychological Science, 1(11), p. 77-89, 2022

DOI: 10.1177/21677026221103136

Links

Tools

Export citation

Search in Google Scholar

Resting-State Functional Connectivity Differences Following Experimental Manipulation of the Orbitofrontal Cortex in Two Directions via Theta-Burst Stimulation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Compulsive behaviors (CBs) have been linked to orbitofrontal cortex (OFC) function in animal and human studies. However, brain regions function not in isolation but as components of widely distributed brain networks—such as those indexed via resting-state functional connectivity (RSFC). Sixty-nine individuals with CB disorders were randomized to receive a single session of neuromodulation targeting the left OFC—intermittent theta-burst stimulation (iTBS) or continuous TBS (cTBS)—followed immediately by computer-based behavioral “habit override” training. OFC seeds were used to quantify RSFC following iTBS and following cTBS. Relative to cTBS, iTBS showed increased RSFC between right OFC (Brodmann’s area 47) and other areas, including dorsomedial prefrontal cortex (dmPFC), occipital cortex, and a priori dorsal and ventral striatal regions. RSFC connectivity effects were correlated with OFC/frontopolar target engagement and with subjective difficulty during habit-override training. Findings help reveal neural network-level impacts of neuromodulation paired with a specific behavioral context, informing mechanistic intervention development.