Published in

American Institute of Physics, Applied Physics Letters, 21(119), 2021

DOI: 10.1063/5.0074335

Links

Tools

Export citation

Search in Google Scholar

Magnon junction effect in Y3Fe5O12/CoO/Y3Fe5O12 insulating heterostructures

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Magnonics as an emerging frontier of spintronics aims using magnons to deliver information free from electron scattering and as-induced Joule heating. In general, magnon currents can be excited both thermally and electrically in magnetic insulators by applying a current in an adjacent heavy-metal layer. Here, we report another kind of magnon junctions (MJs) composed of Y3Fe5O12/CoO/Y3Fe5O12 heterostructures, in which Y3Fe5O12 and CoO are, respectively, ferrimagnetic and antiferromagnetic insulators. A temperature gradient can drive a high (low) magnon current via the spin Seebeck effect when the Y3Fe5O12 layers in an MJ are configured at the parallel (antiparallel) state, showing a spin valve-like behavior. Electrically injected magnon current could also be controlled by the MJs, contributing to a magnon-mediate nonlocal spin Hall magnetoresistance (SMR). Furthermore, compared with its NiO counterpart, both the magnon junction and magnon-mediate SMR effects can be clearly observed at room temperature for the CoO-based magnon junctions, which can possibly be applied as a building block for room-temperature magnon-based memory or logic devices.