Published in

Oxford University Press, Nutrition Reviews, 5(80), p. 1160-1178, 2021

DOI: 10.1093/nutrit/nuab048

Links

Tools

Export citation

Search in Google Scholar

Macronutrient-induced modulation of periodontitis in rodents—a systematic review

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Context Consumption of dietary macronutrients is associated with the progression of a wide range of inflammatory diseases, either by direct modulation of host immune response or via microbiome. This includes periodontitis, a disease affecting tooth-supporting tissues. Objective The aim of this work was to systematically review studies focusing on the effect of macronutrient (ie, carbohydrate, protein, fat) intake on periodontitis in rodents. Data Sources Electronic searches were performed in February 2021 using the PubMed and Web of Science databases. Out of 883 articles reviewed, 23 studies were selected for additional analysis. Data Extraction Investigators extracted relevant data, including author names; the year of publication; article title; macronutrient composition; number and species of animals and their age at the start of the experiment; intervention period; method of periodontitis induction; and primary and secondary periodontitis outcomes. Quality assessment was done using the risk-of-bias tool for animal studies. After completing the data extraction, descriptive statistical information was obtained. Data Analysis High intakes of dietary cholesterol, saturated fatty acids, and processed carbohydrates such as sucrose, and protein-deficient diets were positively associated with periodontitis in rodents. This included greater amounts of alveolar bone loss, more lesions on periodontal tissues, and dental plaque accumulation. In contrast, high doses of milk basic protein in diets and diets with a high ratio of ω-3 to ω-6 fatty acids were negatively associated with periodontitis in rodents. Conclusion This work highlights the fact that, despite the large body of evidence linking macronutrients with inflammation and ageing, overall there is little information on how dietary nutrients affect periodontitis in animal models. In addition, there is inconsistency in data due to differences in methodology, outcome measurement, and dietary formulation. More studies are needed to examine the effects of different dietary macronutrients on periodontitis and investigate the underlying biological mechanisms.