Published in

Wiley, Microscopy Research and Technique, 12(84), p. 2947-2959, 2021

DOI: 10.1002/jemt.23854

Links

Tools

Export citation

Search in Google Scholar

Morphological and elemental evaluation of biochar through analytical techniques and its combined effect along with plant growth promoting rhizobacteria on Vicia faba L. under induced drought stress

Journal article published in 2021 by Muhammad Nafees ORCID, Sami Ullah, Iftikhar Ahmed ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractDrought is a persistent and complex natural vulnerability whose rate and extent of recurrence are expected to increase with climate change. Regardless of the progress made in responding and adapting to water scarcity, drought stress causes severe afflictions. Therefore, the present study has been accomplished in Department of Botany, University of Peshawar to investigate the effect of biochar and plant growth promoting rhizobacteria (PGPR) Cellulomonas pakistanensis (NCCP11) and Sphingobacterium pakistanensis (NCCP246) on Vicia faba under drought stress. Two varieties of seeds Desi (V1) and Pulista (V2) were obtained from Cereal Crop Research Institute (CCRI) Nowshera, sown in earthen pots in triplicate filled with 3 kg soil and sand (2:1) and biochar (0 and 5% w/w). Scanning electron microscopy of biochar showed porous nature and energy dispersive x‐ray spectroscopy spectroscopy showed C, Ca, Mg, and Na elemental composition. Germination parameters including germination energy (GE), Timson germination index (TGI), germination index (GI), and water use efficiency (WUE) were amplified to 28.04, 19.17, 25.72, and 43.62% in V1, respectively, and 14.38, 16.66, 19.79, and 41.50% in V2 respectively, by the co‐application of biochar and PGPR. Agronomical attributes including, fresh and dry weight of leaves, root, and shoot were significantly reduced, which were positively ameliorated by 28.57, 36.36, 16, 10.47, 14.28, and 10%, respectively, by the application of biochar and PGPR especially by NCCP246 in combination as well as individually. It has been concluded that, adversities of drought significantly condensed with the application of biochar and PGPR, which may be important in agricultural practices carried out in water‐deficient regions.