Published in

American Institute of Physics, Applied Physics Letters, 4(123), 2023

DOI: 10.1063/5.0163034

Links

Tools

Export citation

Search in Google Scholar

Efficient spin–orbit torque switching in perpendicularly magnetized CoFeB facilitated by Fe2O3 underlayer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Spin–orbit torque (SOT) is recognized as an effective way to manipulate magnetization in spintronic devices. For the low-power consumption and high-endurance requirements of future computer architectures, reducing the critical SOT switching current density and improving SOT efficiency are crucial, especially in the perpendicularly magnetized structures. Here, we have conducted a comprehensive study on improving the SOT efficiency of the Ta/CoFeB structure with a perpendicular magnetic anisotropy by inserting an oxide insulating layer Fe2O3 as the bottom layer. We found that only a 1–5 nm thickness of Fe2O3 significantly reduces the SOT critical switching current by 70% and enhances the spin Hall angle of Ta. The spin Hall angle increases from 0.078 for pure Ta/CoFeB to 0.13 for Fe2O3/Ta/CoFeB, and both types of spin–orbit torques, damping-like and field-like torques, are significantly enhanced. It is suggested that the atomic diffusion of O from the Fe2O3 underlayer leads to the partial oxidization of the Ta layer as well as the Ta/CoFeB interfaces, accounting for the observed enhanced SOT efficiency. Our results provide a reliable method to improve the SOT performance in perpendicularly magnetized structures by inserting the oxide underlayer using magnetron sputtering, in favor of its potential real-world application in spintronic devices.