Dissemin is shutting down on January 1st, 2025

Published in

American Phytopathological Society, Plant Disease, 11(106), p. 2856-2865, 2022

DOI: 10.1094/pdis-09-21-2070-re

Links

Tools

Export citation

Search in Google Scholar

Populations of Puccinia striiformis f. sp. tritici in Winter Spore Production Regions Spread from Southwestern Oversummering Areas in China

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Stripe rust, caused by Puccinia striifomis f. sp. tritici (Pst), is one of the most destructive wheat diseases in China. Understanding the interregional dispersal of Pst inoculum is important for controlling the disease. In the present study, wheat stripe rust samples collected from the winter spore production and oversummering regions in November 2018 to March 2019 were studied through virulence testing and molecular characterization. From 296 isolates, 96 races were identified using a set of 19 Chinese wheat cultivars and 111 races were identified using 18 Yr single-gene lines as differentials. The isolates from Hubei province in the winter spore production area had the highest similarity in virulence with those from eastern Yunnan in the oversummering area. Molecular characterization using 13 simple-sequence repeat and 43 Kompetitive allele specific PCR-single nucleotide polymorphism markers supported the conclusion that the Pst populations in the winter spore production regions were from Guizhou and eastern Yunnan, key oversummering areas in the southwest. Furthermore, an analysis of wind movement at the 700-hPa high altitude also supported the conclusion of spore dispersal from the southwestern oversummering region to the south-central winter spore production region. The results of this study provide an epidemiological basis for deploying various effective resistance genes in different regions to control stripe rust.