Published in

American Institute of Physics, APL Materials, 8(9), 2021

DOI: 10.1063/5.0055614

Links

Tools

Export citation

Search in Google Scholar

Ferromagnetic insulating epitaxially strained La2NiMnO6 thin films grown by sputter deposition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The field of oxide spintronics can strongly benefit from the establishment of ferromagnetic insulators with near room-temperature Curie temperature. Here, we investigate the structural, electronic, and magnetic properties of epitaxially strained thin films of the double perovskite La2NiMnO6 (LNMO) grown by off-axis radio-frequency magnetron sputtering. We find that the films retain insulating behavior and a bulk-like Curie temperature in the order of 280 K independently of the epitaxial strain conditions. These results suggest a prospective implementation of LNMO films in multi-layer device architectures where a high-temperature ferromagnetic insulating state is a prerequisite.