Published in

Nature Research, Communications Physics, 1(6), 2023

DOI: 10.1038/s42005-023-01339-1

Links

Tools

Export citation

Search in Google Scholar

Charge fluctuations in the intermediate-valence ground state of SmCoIn5

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn5 and other Ce-based heavy fermion materials, depends strongly on the efficiency with which f electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce3+ (4f1, J = 5/2) with Sm3+ (4f5, J = 5/2), we show that a combination of the crystal electric field and on-site Coulomb repulsion causes SmCoIn5 to exhibit a Γ7 ground state similar to CeCoIn5 with multiple f electrons. We show that with this single-ion ground state, SmCoIn5 exhibits a temperature-induced valence crossover consistent with a Kondo scenario, leading to increased delocalization of f holes below a temperature scale set by the crystal field, Tv ≈ 60 K. Our result provides evidence that in the case of many f electrons, the crystal field remains the dominant tuning knob in controlling the efficiency of delocalization near a heavy fermion quantum critical point, and additionally clarifies that charge fluctuations play a general role in the ground state of “115” materials.