Published in

Wiley, Advanced Healthcare Materials, 4(13), 2023

DOI: 10.1002/adhm.202302626

Links

Tools

Export citation

Search in Google Scholar

Hyaluronic Acid‐Based Reactive Oxygen Species‐Responsive Multifunctional Injectable Hydrogel Platform Accelerating Diabetic Wound Healing

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractDiabetic wounds are more likely to develop into complex and severe chronic wounds. The objective of this study is to develop and assess a reactive oxygen species (ROS)‐responsive multifunctional injectable hydrogel for the purpose of diabetic wound healing. A multifunctional hydrogel (HA@Cur@Ag) is successfully synthesized with dual antioxidant, antibacterial, and anti‐inflammatory properties by crosslinking thiol hyaluronic acid (SH‐HA) and disulfide‐bonded hyperbranched polyethylene glycol (HB‐PBHE) through Michael addition; while, incorporating curcumin liposomes and silver nanoparticles (AgNPs). The HA@Cur@Ag hydrogel exhibits favorable biocompatibility, degradability, and injectivity. The outcomes of in vitro and in vivo experiments demonstrate that the hydrogel can effectively be loaded with and release curcumin liposomes, as well as silver ions, thereby facilitating diabetic wound healing through multiple mechanisms, including ROS scavenging, bactericidal activity, anti‐inflammatory effects, and the promotion of angiogenesis. Transcriptome sequencing reveals that the HA@Cur@Ag hydrogel effectively suppresses the activation of the tumour necrosis factor (TNF)/nuclear factor κB (NF‐κB) pathway to ameliorate oxidative stress and inflammation in diabetic wounds. These findings suggest that this ROS‐responsive multifunctional injectable hydrogel, which possesses the ability to precisely coordinate and integrate intricate biological and molecular processes involved in wound healing, exhibits notable potential for expediting diabetic wound healing.