Published in

American Institute of Physics, Applied Physics Reviews, 1(11), 2024

DOI: 10.1063/5.0177451

Links

Tools

Export citation

Search in Google Scholar

Sliding-mediated ferroelectric phase transition in CuInP2S6 under pressure

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Interlayer stacking order has recently emerged as a unique degree of freedom to control crystal symmetry and physical properties in two-dimensional van der Waals (vdW) materials and heterostructures. By tuning the layer stacking pattern, symmetry-breaking and electric polarization can be created in otherwise non-polar crystals, whose polarization reversal depends on the interlayer sliding motion. Herein, we demonstrate that in a vdW layered ferroelectric, its existing polarization is closely coupled to the interlayer sliding driven by hydrostatic pressure. Through combined structural, electrical, vibrational characterizations, and theoretical calculations, we clearly map out the structural evolution of CuInP2S6 under pressure. A tendency toward a high polarization state is observed in the low-pressure region, followed by an interlayer-sliding-mediated phase transition from a monoclinic to a trigonal phase. Along the transformation pathway, the displacive-instable Cu ion serves as a pivot point that regulates the interlayer interaction in response to external pressure. The rich phase diagram of CuInP2S6, which is enabled by stacking orders, sheds light on the physics of vdW ferroelectricity and opens an alternative route to tailoring long-range order in vdW layered crystals.